From Camera To Desktop: The Distribution And Handling Of Video As Files

By Robert R. Gerhart 

Show me... 

In this digital age, audio and video have replaced static forms of communication, and the computer is no exception to this rule. Lifeless text has given way to sound and motion. The problem has come in finding ways to translate information from traditional analog platforms into digital media that can be readily distributed in formats serviceable and sophisticated enough for the professional data handler, yet understandable enough to be usable by the average consumer. 

Digital Versus Digitized Video 

Today's modern studios use a mixture of digital, digitized and analog media for content creation. Most people in the video field, however, commonly refer to just about any computer-based moving picture as "digital video," regardless of its true origin and nature. While this definition is not entirely wrong, it is certainly less than accurate. To better understand the handling of video as files, a common frame of reference needs to be established. 

True digital video is, quite literally, a digital version of analog video. It is defined by its signal characteristics under the guidelines set by SMPTE, which dictates the legal values, gamma, colorimetry and amplitude of the digital signal. These guidelines, like those of traditional analog video, provide a standard for the handling of digital media across a variety of equipment types and from different manufacturers. In contrast, digitized video is a product of the computer age. It can exist in a number of different formats, many of which are not necessarily compatible, and on a variety of computer platforms, most of which are also incompatible. And, unlike true digital video which is defined by its signal characteristics, digitized video is classified by the method used to store the media in the computer. 


Understanding Video and the Computer 

Digitized video (or media, as it often includes audio and other information) is probably the most common format in use today and, as such, is the focus of this article. It is the backbone of every nonlinear editing system, makes media transfer over the Internet possible and functions as the core technology behind every major communication media in use today. In order for computers to work with digitized media, however, the programs in question must be able to handle a variety of contingencies inherent with this technology. At the most basic level, they must first be capable of reading and, in some cases, writing the particular format or formats used for media storage. These reading/writing devices, known as codecs, are usually chosen by a vendor with a specific purpose in mind, such as the handling of video, audio, animation, MIDI or some other dynamic media type or combination. 

For most broadcasters' and videographers' purposes in handling digitized media, specialized codecs have been written that give a system the ability to reach beyond the normal computer-based parameters of file size, data rates, window size and compression scheme to manipulate the variables internal to a media file's content. These can include video parameters such as line structures, aspect ratios, colorimetry and gamma, as well as audio parameters like sample rate, bit depth, stereo pairing and volume controls. With so many media types available, careful selection of the codecs supported by a program reduces the probability of error or confusion by the user and helps to produce a higher quality end product, with lower system operating overhead and a more affordable price. Taking this idea a step further, many manufacturers have either modified established codecs or created their own proprietary versions, ensuring maximum compatibility with their programs at the expense of inter-program or cross-platform file sharing. 

Also note, digitized media seldom remains in one place for very long. A program designed to handle this media must be able to work across the different platforms used to capture, store, manipulate, transfer and view it. The program must be able to recognize both the media type and content, as well as the file type the media is stored in and its platform of origin. Though some would argue that this is more an aspect of computer networking than of digitized video, it is still important to the overall procedure of handling video as files and therefore necessitates consideration. 

Codecs and Compression Theory 

Codecs are the functional part of a program or operating system that contain both compression and decompression algorithms. They are an integral part to the creation of both digital and digitized video, as well as a variety of other media. These algorithms determine with which formats of digitized media a program can work. Fast-compressing codecs increase the efficiency with which digitized media can be created, while fast-decompressing codecs increase the speed at which the user can open and manipulate the finished file. Obviously, the faster that both of these processes can be performed, the better. Decompression, however, is usually most important--especially for CD-ROM, network and Internet-based delivery applications. 

Compression and decompression times are often not equal given the same data stream; codecs that provide higher compression ratios tend to require substantially longer times to compress than decompress--these are known as asynchronous codecs. Two main factors will determine which codec is best suited for a particular type of media: the speed of the codec's compression algorithm and the reproduction quality of the images being compressed. Each codec takes advantage of different properties of a file to achieve compression, so the type of material being compressed and how it was produced significantly affects both how much compression can be applied and how well the codec can reproduce the compressed material. Compression quality can be adjusted at two levels during the creation of a digital or digitized video file, spatially or temporally, depending on the codec involved. 

Spatial Compression is the process of applying compression to individual frames. It eliminates the redundant information within each frame but does not affect the frame relative to the image sequence of which it is part. The best example of this type of compression is found in JPEG images, where the tradeoff between the quality of an image can be easily compared to its file size. In most codecs, key frames are usually only spatially compressed. 

Temporal Compression is the process of applying compression to a sequence of images such as video and multimedia. The individual images themselves can also have spatial compression applied to them, either before or during the temporal compression process, but this is not always the case. Temporal compression is applied to the different frames of an image sequence--those frames that are not designated as keyframes. This compression technique takes advantage of the fact that, in general, a given frame has much in common with the frame that preceded it, therefore the codec only needs to recognize the differences between the frames and store the changes that have occurred from one frame to the next. Keyframes function as the reference frame for the image sequence that follows, and therefore need to be complete images. It is for this reason that they are not able to be temporally compressed. 

It's A Codec Moment: The Working Codec 

There are many different codecs available to the computer user today. More than a few have been created or modified to work with specific application programs or hardware systems. Designed to compress a wide variety of media including video, animation, audio, MIDI, time code and more, most offer more than just spatial and temporal controls. The setting of these controls will play an integral part in determining the nature of the media file being created and can influence both reproduction quality and file size dramatically. The following list will examine a number of these parameters and how they affect the media file. 

Keyframes are the designated frames in an image sequence that provide a point from which a temporally compressed sequence may be decompressed. The use of more keyframes in a sequence will increase the overall file size of the finished media file, but will benefit the enduser by permitting more effective random access to any part of the sequence and improving a sequence's reverse playability. If these features are not deemed important, the number of keyframes can be reduced accordingly. However, sufficient keyframes must be present to allow the media player to keep video, audio or other data synchronized during playback. The creation of keyframes can be either natural or forced. A natural keyframe is the first frame of a cut in the image sequence, while a forced keyframe is one that is created arbitrarily by the application program itself, or the codec being utilized by the program for compression. Many applications and codecs will automatically create a forced key frame when they detect a certain percentage or greater difference between the current frame and the previous frame in an image sequence. 

Frame Rate--Most applications allow you to select the desired frame rate for playback. This number can be set to any amount, however, for smoothness of playback, it is strongly recommended that a frame rate which is a sub-multiple of the source rate be utilized (from a digitized NTSC source of 30 fps, you should use 30, 15 or 10 fps; from a digitized PAL source of 25 fps, use 25, 12.5 or 6.25 fps). Reducing the frame rate of the media file will obviously reduce the file's size and increase playback stability accordingly, but an excessively low- frame rate will create jerky movement in the action and erratic or unfinished looking transitions. 

Frame Size--Most traditional analog broadcast professionals recognize television frame size as being either 640x480 pixels for NTSC or 720x576 pixels for PAL. Many media-handling programs in use today come with a variety of commonly-used frame sizes preset, including these, and often allow for the manual creation of custom aspect ratios for alternate applications. Programs that support the use of custom frame sizes can often be set by the user to either crop or distort an original image to fit different frame dimensions. For draft purposes or non-broadcast applications, some programs offer the option of outputting reduced frame sizes without changing the working resolution, usually featuring settings from full to half, third or quarter of the original size, depending on the software being used. Smaller frame sizes not only create smaller file sizes for the finished media file, but provide easier playback on older or less-sophisticated systems. When full-size resolution is not critical to the final product, reducing the frame size is an easy way to create significant increases in media playback performance. 

Pixel Shape--Once upon a time, the only answer was "square." With the advent of digital video and HDTV, that is no longer the case. Modern media handling, especially for broadcast applications, requires software to have the ability to either set or select a pixel shape compatible with the aspect ratio of the media's final output. This range often spans from traditional NTSC square pixels to those necessitated by the numerous aspect ratios and line configurations of digital video formats and HDTV standards, with many programs offering user-selectable or custom settings. 

Color Depth--Many programs and codecs also allow you to select the number of possible colors, or color depth, of the media file being created. Though most computers today are capable of delivering a color palette into the millions of colors, only a small portion of this is ever needed or utilized. As human vision is limited to a only small fraction of that possible spectrum, it makes sense to eliminate those frequencies that are beyond or below our range of perception. Limiting a media file to the lowest possible number of colors can make for substantial reductions in file size, as well as increase its playback stability on older or less sophisticated systems. Eliminating color altogether, of course, takes this efficiency a step further, though this is usually not a feasible option. Care needs to be exercised when reducing color depth in addition to applying video compression. Too much compression used in conjunction with an overly limited color palette can cause posterization, solarization and a generally overall poor image quality, especially when applied to an intricate or dithered source. 

Data Rate--This setting designates the amount of data provided or required at a specific moment in time to play a particular media file. Control of this number (measured in Kbps) is an important factor, not only in regulating the final file size of the finished file, but in determining the minimum system configuration required to decompress and play the media without problems or interruptions. Higher data rate settings will create a media file with better overall quality, but too high of a setting can cause problems with playback on less powerful machines or those with slower peripherals (when playing back through a network, over the Internet or from a CD-ROM). Lower data rate settings will reduce overall file size and increase playability on older machines, but will make the media look unclear and "primitive," especially on more technologically advanced systems. It should be noted that in codecs where you can set a limit to a file's playback data rate (for example, Cinepak), the spatial and temporal quality settings are adjusted dynamically during compression, so the specified data rate is not exceeded as the finished media is decompressed. 

Hardware- and Software-Based Codecs 

Codecs, for all their numbers and diversity, essentially come in two varieties: hardware-based and software-based. Usually tied in with specific program packages or operating systems, they often constitute a primary part of the host system's functionality. 

Hardware-Based Codecs, as the name implies, require a hardware component, usually in the form of a peripheral board or sub-processor module, to function at their optimum efficiency. Though most hardware-based codecs can operate without this component, their efficiency is usually greatly reduced and some, designed to run within specific applications, are unable to function at all. The benefit of working with hardware-based codecs is recognized in their superior performance. The hardware element allows the codec to handle markedly higher data rates without dropping frames or losing synchronization with related media, thus enabling the user to work in greater resolution, with larger aspect ratios and at higher frame rates than software-based solutions. 

This performance is not without its drawbacks, however. Hardware-based codecs are considerably more expensive than their counterparts, largely due to the cost of the hardware component. Their usefulness in some situations is also limited because of their connection to the hardware--media files created with these kinds of codecs usually are only able to be viewed on computers containing similar hardware. Also, the flexibility and features of the codec are often dictated by this symbiosis--if it isn't supported on the hardware, the codec is probably incapable of doing it, now or in future revisions, without modifying or replacing the hardware element. Finally, updates, if available, are usually hardware- or firmware-based, and may necessitate a trip to an authorized service center to complete. 

Software-Based Codecs, on the other hand, rely on the computer's own CPU for their computational power and, therefore, can be installed on any system with sufficient processing ability. Available in greater numbers and for more diversified applications than their hardware-based counterparts, software-based codecs are considerably less expensive and usually offer more available features, sacrificing top-end performance for enhanced functionality. Their effectiveness is dictated solely by the host system's processing capability. Many systems that rely on hardware-based codecs for their main functionality will often incorporate software-based codecs for inter-program or cross-platform media exchanges. 

Getting There is Half the Fun 

The world is analog and, as we've seen, computers (and therefore the future of media content creation and distribution) are not. At some point, content will have to be converted to a digital format of some nature so that it can be edited, manipulated, integrated and distributed. That process can take place at the time the media is acquired or at some point in the future, but it will happen. Codecs will define the media's parameters as it is captured and stored, but it is the hardware and related software that will dictate when and how the media will enter the digital realm. 

To get the most out of your media, "digital in" is obviously the best place to start. This means getting the A/D conversion process as close to your source as possible. This will ensure the clearest possible recording while, at the same time, reduce the chance for degradation to a minimum. Starting with a clean source will make any future digital manipulation easier and faster, as errors and artifacts require more processing time and storage space to address. Computers, as a rule, do not know the difference between an error, artifact or element, and will treat them all with equal enthusiasm, expending valuable processing resources in doing so. Failing "digital in," the next best alternative is to digitize from the cleanest possible source material using the highest quality equipment, cabling and connectors available. A wide variety of possible alternatives is presented at this stage, ranging from simple pieces of software that utilize a computer's stock input ports and system CPU, to elaborate and exotic nonlinear editing workstations with specialized hardware and custom software and codecs. Obviously, at this level, some sort of determination needs to be made based on the media, its origin, its intended use and its final destination as to what sort of equipment will be employed to digitize, store and otherwise manipulate it. 

Once digitized, source media often changes form several times before reaching the output and distribution stages. Editing and other content manipulation usually takes place at the highest possible quality level, during which time the primary media is often combined with additional material such as audio, data tracks or other information. The resulting program is then output as a self-contained file. It is usually at this stage where preparation for distribution takes place. This can be done either by the software that created the file, or by another, more specialized media manipulation program. Preparations can include repackaging the media with a new codec, reductions to the data rate, color palette, frame size or frame rate. Equal attention must also be given to available audio tracks, which can be eliminated or combined, have their sample rate or bit depth reduced or any one of a number of codecs applied. All of these factors and more are reliant upon the media's final destination and playback methodology. 

Gently Down the Stream 

With the number of personal computers on the rise, and the future of broadcasting going digital, it is not hard to envision the eventual nirvana that will be streaming content over the Internet. Though increasingly more common, streaming video is still in its infancy; it has a long way to go before even beginning to approach broadcast quality as we know it today. Several companies and numerous technologies continue to make headway in this area, but the core process remains the same--content must be digitized, prepared and then distributed. The venue is the Internet and the limitations are numerous and ever-changing. Bandwidth constrictions and modem limitations make realtime streaming problematic at best. To overcome this, a technique called Progressive Downloading is most frequently used, whereby media is downloaded onto a computer's hard drive and played back from there, instead of being processed in realtime directly from the data stream. Transferring and viewing media in this way has numerous benefits, including reduced bandwidth demands and improved media quality and playback reliability. Files can be created with the more space-efficient, if time-consuming, codecs instead of those designed to move quickly at the expense of quality. 

The popularity of streaming media will continue to increase in the coming years and, with it, so will the technology to make better files faster and move them more efficiently. Streaming media is no longer reserved almost solely for professional Web masters or large corporations, but is now available to virtually anyone with a good personal computer and a reliable Internet connection. 

Playing With Your Media 

Players are a computer's software architecture for allowing users to access video, audio, animation, text and other dynamic information. Available in a variety of formats, from stand-alone programs to system software components and plug-in drivers, a multitude of players are available for each of the different computer architectures commonly in use today--Macintosh, Windows and SGI. Some players, such as QuickTime, have versions for more than a single operating system (including Java), providing comparable features as well as a standard of compatibility for exchanging files between programs and computers. Players are usually self-contained packages which work in a stand-alone capacity to view, and sometimes manipulate, media files. They can be as simple as a small shareware program that will allow you to play files downloaded from the Internet, or as complicated as a high-end nonlinear editing or compositing workstation costing tens or hundreds of thousands of dollars. More sophisticated players are often able to access any additional codecs that might be available on the host system and incorporate their functionality into its own. In some cases, especially when working with hardware-based codecs, special players are provided by the vendor which are designed to interface with the non-system hardware for enhanced performance. 

Like codecs, players vary in form and function. Even the most basic may look simple from the user's perspective, but underneath they often have to handle a variety of rather complicated functions. QuickTime, for instance, probably the most commonly installed player available, is composed of over 200 separate software components divided into more than 20 different categories. This component architecture not only includes system software, but also compression facilities, human interface standards and standardized file format recognition. Its modular design allows for timely updates that support new technologies and enhancements to existing ones without necessitating costly or lengthy revisions. These components combine to create a cross-platform architecture that allows developers to create multimedia content once, then distribute it across multiple platforms with virtually no additional work. 

As with video, audio media can be played and edited in much the same way. Again, a variety of players are available ranging in price and sophistication, from small shareware programs to sophisticated digital audio workstation systems. Most of the time, however, the same player used for accessing video media functions works quite well with files containing only audio information. Like their video counterparts, audio players are available which are not only able to play audio media, but edit the audio content as well. These usually incorporate a selection of built-in codecs, and may be able to access additional ones available on the host system. 

Picking a Player for Your Team 

A good player, or application that incorporates its own built-in player, is one that does not have to rely on extensive driver libraries for support of other platforms, applications or configurations. It will natively support the relevant codecs and give the digital content creator the ability to easily view or manipulate media from a variety of sources without concern for file or format compatibility. Whether your application for digitized media is as involved as nonlinear film compositing or as simple as the creation of a few basic animated files for the Internet, a general understanding of the codecs and principles involved will go a long way to helping you create better, more effective content for your viewing audience.

